matlabkhooneh

پروژه های پردازش تصویر - تبدیل هندسی ( کد Mat0099 )

1 - تبدیل هندسی

۱-۱ -توسط تبدیل هندسی مناسب، تصاویر Lena ،Barbara و Girl را بر روی سه وجه از مکعب تصویر Cube قرار دهید. تبدیالت هندسی را با بکارگیری درونیابی نزدیکترین همسایه و درونیابی دوخطی انجام دهید.

۱-۲ -انطباق تصاویر یا Registration به فرایند منطبق کردن دو یک چند تصویر بر هم گفته میشود. در این حال و برای دو تصویر، یک تصویر، تصویر مرجع و دیگری تصویر ورودی است که بایستی بر تصویر مرجع منطبق شود. تصویر Map1 را به عنوان تصویر مرجع در نظر گرفته و تصویر Map2 را بر آن منطبق کرده و نمایش دهید. پارامترهای مدل را ارایه کنید

2 - فیلتر میانگین

۱-۲ -فیلتر میانگین به کمک کانولوشن پیاده سازی می شود. با استفاده از خصوصیات فیلتر میانگین از نوع Filter Box ،روشی برای افزایش سرعت پیاده سازی این فیلتر ارایه کنید؛ زمان اجرا الگوریتم اصلی را با الگوریتم خود مقایسه کنید.

۲-۲ -آشکارسازی لبه Robert را به تصویر Mosque اعمال کرده شدت لبه را نشان دهید. فیلتر میانگین 3×3 را ابتدا به تصویر اصلی اعمال کرده و آشکارساز لبه را به تصویر هموار شده اعمال کنید. چه تغییر در نتیجه ایجاد شده؟ این تجربه را به کمک فیلتر 5×5 و 7×7 نیز تکرار کرده و بر روی نتیجه بحث کنید.

۲-3 - دوبار اعمال متوالی یک فیلتر میانگین 3×3 دقیقاً همان نتیجهای که اعمال یکبار فیلتر 5×5 بوجود میآورد را ایجاد نخواهد کرد. آیا میتوانید فیلتری 5×5 طراحی کنید که نتیجهای اعمال آن مشابه دو بار اعمال یک فیلتر 3×3 باشد.

۲-۴ -فیلتری 7×7 طراحی کنید که اعمال آن معادل سه بار اعمال متوالی یک فیلتر 3×3 باشد. به کمک یک آزمایش بر روی تصویر Mosque صحت عملکرد فیلتر طراحی شده را نشان دهید.

3 - بهبود کنتراست تصویر

تصاویر He1 ،He2 ،He3 و He4 تصاویری هستند که میخواهیم به کمک بهبود کنتراست آنها را بهبود دهیم.

3-۱ -بهبود کنتراست این تصاویر را به کمک همسانسازی هیستوگرام (HE (انجام داده نتیجه را ارایه کنید.

3-۲ -اگر تصویر ورودی را f و تصویر بهبود یافته به کمک HE را fhe بنامیم. به ازای مقادیر مختلف α ،از 1.0 تا 5.0 با گام 1.0 تصویر fhe) α-1+(f.α=g را بدست آورده و نتیجه را نمایش دهید. بر روی نتایج بحث کنید.

3-3 -همسانسازی محلی هیستوگرام (LHE (با استفاده از پنجره هایی به ابعاد 5۱×5۱ ،۱0۱×۱0۱ ،۱5۱×۱5۱ و ۲0۱×۲0۱ را بر روی این تصاویر انجام و نتیجه را ارایه کنید. در مورد نتایج بحث کنید.

3-۴ -برای افزایش سرعت LHE از جابجایی بلوک ها به اندازه نصف بلوک و درونیابی استفاده کنید. جهت سهولت، ابعاد پنجره های فوق را در سطر و ستون یک واحد کم کنید تا ابعاد پنجره ها زوج شود.

4 - نقابگذاری غیر تیز (Un-sharp Masking)  

۴-۱ -به کمک استفاده از یک فیلتر هموارساز میانگین 3×3 از نوع Filter Box ،نقاب گذاری غیرتیز را به تصویر child اعمال کنید.

۴-۲ -نقابگذاری غیرتیز را با فیلتر هموار ساز میانگین 3×3 از نوع Average Weighted پیاده سازی کرده نتیجه را با نتیجه قبل مقایسه کنید.

۴-3 -تجربه قسمت )۱ )را با فیلترهای با اندازه بزرگتر 5×5 ،7×7 و 9×9 تکرار کنید. بزرگ کردن فیلتر چه تاثیری بر نتیجه دارد؟ بر روی آن بحث کنید.

۴-۴ -اگر در نقاب گذاری غیرتیز فیلتر میانه را به عنوان فیلتر هموارساز استفاده کنیم چه نتیجهای حاصل می شود؟ 16/1 کلیشه زیر را به عنوان کلیشه لاپلاسین در نظر بگیرید.

5 - حوزه فرکانس

5-۱ -تصویر Im184 را به حوزه فرکانس برده، یکبار طیف Im183 را با فاز Im184 ترکیب کنید و بار دیگر برعکس. حاصل را به حوزه مکان برگردانده و در مورد نتیجه بحث کنید.

5-۲ -با در نظر گرفتن تصاویر Im421 و Im423 به عنوان ورودی، با استفاده از فیلترهای پایینگذر گوسی با ۱0 پهنای باند مختلف، تصویر را هموار کرده نتیجه را نشان دهید.

5-3 -در هر مورد، آنچه که فیلتر پایینگذر حذف کرده را یکبار در حوزه ی مکان و یکبار در حوزه فرکانس بدست آورید و نتیجه را نمایش دهید. هر تصویر را درکنار تصویر متناظر از مرحله )۱ )نمایش دهید.

5-۴ -تصاویر Im421 و Im423 هر یک از دو تصویر مختلف ساخته شده است، یک تصویر از یک فیلتر پایینگذر و دیگری از یک فیلتر باالگذر عبور داده شده و نهایتا با تنظیم شدت مناسب با هم جمع شده اند. بر این اساس با در نظ ر گرفتن دو تصویر دلخواه شما نیز چنین تصویری ایجاد کنید.

6 - موجک

1-6 -یکی از کاربرد های تبدیل موجک، تشخیص خود شباهتی سیگنال است. فرض کنید تصویر fimg را داریم، در این تصویر بخشی از آن در مکان دیگری از تصویر کپی شده است که اصطالحا به چنین حالتی جعل move Copy گفته میشود. تصویر mask_fimg ناحیه دو بالک شبیه به هم را در تصویر fimg نمایش می دهد. ایده ای ارائه دهید که با استفاده از تبدیل موجک، بتوان این دو بلوک از تصویر fimg را که شبیه هم هستند، تشخیص داد. شبه کد الزامی و پیاده سازی میتواند با هر زبانی انجام شود.

2-6 -یکی از کاربرد های تبدیل موجک، یافتن شبیه ترین تصاویر نسبت به تصویر ورودی است. فرض کنید تصویر test را داریم و میخواهیم تصاویر پوشه آموزش را به ترتیب به شبیه ترین تصاویر مرتب کنیم. ایده پیشنهادی خود را شرح دهید و شبه کد آن را بنویسید.

6-3 -تصویر tree را به نویز گاوسی و نمک و فلفل آغشته کنید و با استفاده از تبدیل موجک، تقلیل نویز انجام دهید. شرح دهید که تبدیل موجک کدام نویز را بهتر تقلیل میدهد. کیفیت تصویر تقلیل یافته را به کمک معیارهای PSNR و SSIM گزارش کنید.

7 - پردازش تصاویر رنگی

با جستجو در منابع سه فضا ی رنگ بجز فضاهای رنگ معرفی شده در درس را پیدا کرده در هر مورد وی ژگی های فضا ی رنگ، کاربرد ها و ارتباط آن با فضا ی رنگ RGB یا HSI را بنویسید.

8 - لبه های تصویر زیر را با استفاده از یک فیلتر بالا گذر استخراج کرده (تصویر لبه را بدست آورده و نمایش دهید) و سپس لبه ها رو در تصویر اصلی تقویت کنید.

9 - برنامه ای بنویسید که نرم افزار MATLAB یک تصویر پزشکی را از ورودی گرفته و آن را به سیاه و سفید تبدیل نماید. سپس مقدار D0 و مرتبه فیلتر باترورث را از ورودی گرفته سپس از تصویر FFT گرفته و فیلترهای بالاگذر و پایین گذر باترورث ، گوسی و ایده آل را روی FFT تصویر اعمال نماید. در نهایت از تصویر بدست آمده تبدیل فوریه معکوس IFFT گرفته و حاصل ( تصویر فیلترشده و بهبود یافته ) را به همراه تصویر اصلی نمایش دهد.

10 - تصویر tif.Chessboard را در محیط متلب بارگذاری نمایید. ابتدا با استفاده از دستور rgb2gray ،تصویر را از حالت رنگی(سه لایه) به تصویر سطح خاکستری (یک لایه) تبدیل کنید، سپس آن را بصورت double تبدیل کنید و در متغیر img1 ذخیره نمایید.

11 - با استفاده از از روش اتسو، آستانه ی تصویر را بدست آورید و آن را در متغیر T ذخیره کنید. سپس تصویر را با استفاده از مقدار T ،آستانه گذاری کنید و نتیجه را نشان دهید. )توجه کنید که روش اتسو از هیستوگرام تصویر استفاده می کند(. آیا تمام خانه های سفید و سیاه به درستی از هم جدا شده اند؟ اگر اینطور نیست، چه راه حلی دارید؟ نتایج بهبود یافته خود را نمایش دهید.

12 - تصویر jpg.tr را در محیط متلب بارگذاری نمایید. ابتدا با استفاده از دستور rgb2gray ،تصویر را از حالت رنگی(سه لایه) به تصویر سطح خاکستری (یک لایه) تبدیل کنید، سپس آن را با دستور imbinarize به یک تصویر باینری تبدیل کرده و در متغیر img2 ذخیره نمایید. با استفاده از عملگرهای مورفولوژی، دایره ها را از تصویر استخراج نمایید و نتیجه را نمایش دهید.

13 - تصویر jpg.bottles را در محیط متلب بارگذاری نمایید. ابتدا با استفاده از دستور rgb2gray ،تصویر را از حالت رنگی(سه لایه) به تصویر سطح خاکستری (یک لایه) تبدیل کنید، سپس آن را بصورت double تبدیل کنید و در متغیر img3 ذخیره نمایید. با استفاده از روش های آستانه گذاری و مورفولوژی که تاکنون یادگرفته اید، بطری که مقدار کمتری محلول دارد را شناسایی کرده و مساحت مقدار محلول نشان داده شده ی آن را بدست آورید. (برای بدست آوردن مساحت و دیگر ویژگی ها، از دستور regionprops استفاده می شود.) راهنمایی: خروجی آستانه گذاری و سپس مورفولوژی شما باید بصورت شکل زیر باشد

 

14 - الگوریتم آستانه گذاری اتسو را پیاده سازی کنید و ،تصویر صفحه شطرنجی را با استفاده از الگوریتم خود آستانه گذاری نمایید و با خروجی دستور اتسو متلب مقایسه نمایید.

جهت سفارش پروژه و تکلیف پردازش تصویر OpenCV و متلب MATLAB لطفا در شبکه های تلگرام و واتساپ موضوع و سوال مورد نظر را به شماره  989364847193+ ارسال نمایید، تا پس از بررسی هزینه خدمت شما اعلام گردد.

ارسال نظر آزاد است، اما اگر قبلا در بیان ثبت نام کرده اید می توانید ابتدا وارد شوید.
شما میتوانید از این تگهای html استفاده کنید:
<b> یا <strong>، <em> یا <i>، <u>، <strike> یا <s>، <sup>، <sub>، <blockquote>، <code>، <pre>، <hr>، <br>، <p>، <a href="" title="">، <span style="">، <div align="">
تجدید کد امنیتی
Designed By M A T L A B K H O O N E H